Circadian photoreception: ageing and the eye’s important role in systemic health

نویسندگان

  • P L Turner
  • M A Mainster
چکیده

AIM To analyse how age-related losses in crystalline lens transmittance and pupillary area affect circadian photoreception and compare the circadian performance of phakic and pseudophakic individuals of the same age. METHODS The spectral sensitivity of circadian photoreception peaks in the blue part of the spectrum at approximately 460 nm. Photosensitive retinal ganglion cells send unconscious information about environmental illumination to non-visual brain centres including the human body's master biological clock in the suprachiasmatic nuclei. This information permits human physiology to be optimised and aligned with geophysical day-night cycles using neural and hormonal messengers including melatonin. Age-related transmittance spectra of crystalline lenses and photopic pupil diameter are used with the spectral sensitivity of melatonin suppression and the transmittance spectra of intraocular lenses (IOLs) to analyse how ageing and IOL chromophores affect circadian photoreception. RESULTS Ageing increases crystalline lens light absorption and decreases pupil area resulting in progressive loss of circadian photoreception. A 10-year-old child has circadian photoreception 10-fold greater than a 95-year-old phakic adult. A 45-year-old adult retains only half the circadian photoreception of early youth. Pseudophakia improves circadian photoreception at all ages, particularly with UV-only blocking IOLs which transmit blue wavelengths optimal for non-visual photoreception. CONCLUSIONS Non-visual retinal ganglion photoreceptor responses to bright, properly timed light exposures help assure effective circadian photoentrainment and optimal diurnal physiological processes. Circadian photoreception can persist in visually blind individuals if retinal ganglion cell photoreceptors and their suprachiasmatic connections are intact. Retinal illumination decreases with ageing due to pupillary miosis and reduced crystalline lens light transmission especially of short wavelengths. Inadequate environmental light and/or ganglion photoreception can cause circadian disruption, increasing the risk of insomnia, depression, numerous systemic disorders and possibly early mortality. Artificial lighting is dimmer and less blue-weighted than natural daylight, contributing to age-related losses in unconscious circadian photoreception. Optimal intraocular lens design should consider the spectral requirements of both conscious and unconscious retinal photoreception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interrelationship between Androgen Levels, Ageing, and Cognitive Functions

As men get older, there is a decline in functioning of many biological systems; the endocrine systems share such changes in hormone levels. Ageing in men is accompanied by progressive, but individually variable decline in serum testosterone production in healthy men especially in men over 60 years of age. Androgens determine the differentiation of male internal and external genitalia as well as...

متن کامل

The role of environmental light in sleep and health: effects of ocular aging and cataract surgery.

Environmental illumination profoundly influences human health and well-being. Recently discovered photoreceptive retinal ganglion cells (pRGCs) are primary mediators of numerous circadian, neuroendocrine and neurobehavioral responses. pRGCs provide lighting information to diverse nonvisual (non-image-forming) brain centers including the suprachiasmatic nuclei (SCN) which serve as the body's mas...

متن کامل

Melatonin and human rhythms.

Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines 'biological night.' It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, sali...

متن کامل

Systemic and cellular reflections on ageing and the circadian oscillator: a mini-review.

From circulation to digestion to excretion, a circadian clock synchronizes most aspects of mammalian physiology with the solar day. During normal ageing, this daily coordination gradually erodes, and during pathological ageing such erosion is exacerbated. Recent experiments suggest that therapies aimed at sustaining circadian function increase quality of life in elderly patients. Hence, a bette...

متن کامل

Systemic and cellular reflections on ageing and the circadian oscillator - A mini-review

From circulation to digestion to excretion, a circadian clock synchronizes most aspects of mammalian physiology with the solar day. During normal ageing, this daily coordination gradually erodes, and during pathological ageing such erosion is exacerbated. Recent experiments suggest that therapies aimed at sustaining circadian function increase quality of life in elderly patients. Hence, a bette...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2008